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Quantum Monte Carlo simulation of the one-dimensional 
spin S MTZ model: I. The method 

Mihail Marcu and Andreas Wieslert 
Fakultat fur Physik, Universitat Freiburg, Hermann-Herder-Strasse 3, D-7800 Freiburg, 
West Germany 

Received 1 March 1984, in final form 19 March 1985 

Abstract. We develop a quantum Monte Carlo procedure for the xxz spin chain. The 
quantum model in one dimension is mapped by a path integral method based on the Trotter 
formula into the infinite anisotropy limit of a classical two-dimensional spin system. The 
expectation values of the energy density, susceptibility and static s z - s z  structure function 
are computed in the classical model fur finite but increasing anisotropy. The computation 
method is a Monte Carlo simulation of the classical system. The results are systematically 
extrapolated to the infinite anisotropy limit. 

1. Introduction 

In this paper we continue the investigation, begun in Wiesler (1982), of the quantum 
Monte Carlo method using the Trotter formula (Trotter 1959, Suzuki 1976). We 
consider the quantum statistical mechanics of the xxz model, defined by the following 
Hamiltonian 

N 

H =  - c (s~s~+l+s;s;+]+J,s~s;+l). (1.1) 
i = l  

Sl, Sr, S: are the generators of SU(2) at the site i, N is the number of lattice sites of 
the chain and J, is a coupling constant. For spin-;, H can be diagonalised exactly 
(des Cloizeaux and Gaudin 1966). Let H be a sum of n operators: 

H=H1+H2+. . .+Elfl. (1.2) 

The Trotter formula states that ( p  is the inverse of the temperature T): 

e-PH = M-m lim [exp(-pHl/M) e x p ( - p ~ , / ~ ) .  . . e x p ( - p ~ , / ~ ) ] ~ .  (1.3) 

By inserting complete sets of states on the RHS of (1.3), we can rewrite the partition 
function into the partition function of a two-dimensional highly anisotropic classical 
model. Similarly, we can rewrite the expectation value of an operator A, 

(1.4) 
into an expectation value of an operator in the classical two-dimensional system. At 
this stage the use of a Monte Carlo procedure becomes possible. However, there are 

(A)N = Tr A exp( -pH)/Tr exp( -pH) 
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two effects which make this difficult. Firstly, if M is very large, the couplings of the 
classical model will take extreme values, and as a consequence the errors in the Monte 
Carlo computation will be large. Secondly, if M is not large enough, the results will 
not be close to the M + CO limit. 

The first attempt to use the Trotter formula in a quantum Monte Carlo simulation 
was made by Suzuki (1976, 1977). Our Monte Carlo procedure was described partly 
in Honerkamp (1982), where a preliminary account of our work is given. Initially our 
goal has been to investigate the M + CO limit ‘experimentally’, i.e. by computing the 
same expectation values for increasing M ,  until the results stabilise. We later discovered, 
however, that for large enough M the expectation values are linear in 1 /M2.  This 
allows for a systematic extrapolation procedure. A rigorous proof for the linearity in 
1/ M2 will be given elsewhere. 

In § 2 we derive a classical two-dimensional model for general spin S on an N x M 
lattice by taking a finite value of M in (1.3). Then we discuss the question of what 
quantities can be computed using a Monte Carlo procedure for this classical spin 
system. The Monte Carlo procedure itself is described in § I .  In § 4 we give our spin-1 
results for the energy density, magnetic susceptibility a id s z - s z  static correlation 
function. We took five different values for the coupling J,. The number of lattice sites 
was N = 20 throughout the whole computation and no attempt was made to investigate 
the thermodynamic limit N + m .  However, we expect problems with the thermo- 
dynamic limit only at very low temperatures, especially in the isotropic ferromagnet 
and the isotropic antiferromagnet cases. Our goal in this paper was to investigate the 
quantum Monte Carlo method itself. High ,precision calculations for general values 
of the spin S will be given in a subsequent publication. Our conclusions and outlook 
are contained in § 5 .  

2. The classical two-dimensional spin system 

Following Barma and Shastry (1978), let us split H into four parts: 

H = HI+ H2+ H3+ H4 

Hl = - (S;S:+,  + SYST+l-t- Sfsf+,) 
i = e v e n  

H3=- ( S : S : + l + S ; Y S ~ + l + S f S : + l )  
i = odd 

H 4 -  - H  2 -  --- ;(Jz-l) E sfs:+l. 
all i 

We will take an even lattice size N and periodic boundary conditions. Now we use 
the Trotter formula ( M  is even): 

The classical two-dimensional model is obtained by inserting M complete sets of 
intermediate states in (2.2). These states are chosen as eigenstates of the Sf operators. 
It is crucial that H1, H2, H3 and H4 are sums over commuting local operators. 
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Z , ,  is now the partition function of a classical spin system on an N x M chessboard 
lattice. The spins sU E {-S, - S +  1,. . . , S- 1, S }  are located at the lattice sites, and the 
interaction takes place on the ‘even’ plaquettes (the hatched plaquettes of figure 1). 
The partition function is 

j = l ,  ..., M 
i + j  =even 

with the plaquette weights (for notation see also figure 2): 

f (s l ,  s2, si, si) = exp[p(JZ - l)(sls2+s:si)I  

Figure 1. The chessboard lattice, with the even 
plaquettes hatched. 

51 52 

Figure 2. An even (interacting) plaquette. 

Here p = p/  M and C are the SU(2) Clebsch-Gordan coefficients. In table 1 we list 
the plaquette weights for S = 4 and S = 1. 

In equation (2.4) the plaquette weight is zero unless 

SI + s2 = s: +si. (2.5) 

This is a consequence of the conservation of the z component of the total spin. The 
up-down (i.e. reflection in the xy plane) symmetry implies 

f(s1, s 2 , 4 ,  =A-$,, -s2, -4,  -4) (2.6) 

and spatial parity and Hermiticity of H imply 

f(s1, s2, s:, ss1 =f(s2, s1, s;, si) =f(sl, si, SI, s2). (2.7) 

Equation (2.5) allows for a particle interpretation in the Feynman path integral sense. 
The world lines of the particles move in the ’Trotter’ or ‘Euclidean time’ direction. At 
the lattice site ( i ,  j )  there are sU + S world lines. A world line bit lies either on a vertical 
(timelike) link or on the diagonal of an even plaquette, as shown in table 1 for S = 4 
and S = 1. Two lines never cross and there are at most 2 s  lines on the same vertical 
link or on the same diagonal of an even plaquette. In figures 3 and 4 several 
configurations are drawn using both spins and world lines of particles. A configuration 
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Table 1. Allowed configurations of an even plaquette in terms of spins and world lines of 
particles, and the corresponding plaquette weights. 

~~ 

Weight Configurations having this weight 

e2J,8 

cosh(2p) 

I sinh(2b) 

i1 I I 
;I f --; .-f 

-Yi 4 .-4 

'I 1 0: 
'1 1 1: 

'I 1 --l 0-1 

OI 0 1: 
"I/", 1 

1 

-1. 

1 

-1. .-1 

-1. 0 - 1  

0 - 1  -1- 0 I 0 I 1: :I .-1 -1. 0 

0 

r:: 1: 

-1. l 1 - l  1 

has a fixed particle number np defined as the number of world lines minus N x S :  
N 

n p =  C si,. 
i = l  

n p  is independent of j .  Because of the periodic boundary conditions, the world lines 
can wind around the lattice in space direction. A configuration has a fixed winding 
number n,: 

M 
n,= ( - I ) ~ + ' S ~  

j = 1  

n,  is independent of i. 
Now let us see what quantities of interest for the xxz model can be computed using 

the classical model with partition function 2 N . M .  We shall discuss four types of 
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Figure 3. Two configurations for S = i ;  ‘+’ means ‘g, ‘-’ means ‘-$’. N = 4 ,  M =4.  
( a )  n,=O,  n , = O ;  ( b )  n , = - 1 ,  n , = l .  

Figure 4. Two configurations for S = 1 ,  ‘+’ means ‘ l ’ ,  ‘-’ means ‘-1’. N = 4, M = 4. 
( a )  n , = - 1 ,  n,=O; (6) n , = - 2 ,  n , = 1 .  

quantities. Let us denote by f ( p )  the weight (2.4) of the plaquette p ;  p=even 
consequently means an interacting plaquette. 

2.1. Thermodynamic quantities 

Let us take two examples. The energy density eN is 

with 

e ( p )  =(a/@) I n f ( p ) .  
The magnetisation density is 

1 1  1 
exp(-pH)= Iim -E% n f ( p ) .  

M + ~ Z N , M  s N p=even 

2.2. Equal time expectation values of products of Sf operators 

As an example take the s z - s z  correlation function C :  

(2.10) 

(2.11) 

(2.12) 

1 1 
C ( r )  =-Tr SfS:+,, exp(-PH) = lim -E (Lc s.s~+,,~) n f ( p ) .  (2.13) 

Z N  M+mZN,M 5 M N  i j  p=even  
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Its Fourier transform is the static structure function I ( q ) :  

I ( q )  = C C ( r )  exp(-iqr), 
N 

q = 2 r k /  N, k = 1 ,  . . . ,  N. 
r = l  

The magnetic susceptibility is related to Z(0): 

(2.14) 

(2.15) 

2.3. Expectation values of operators which do not commute with all S j  

For example, the dynamical structure function or the sx-sx correlation function. These 
quantities cannot be computed directly with our Monte Carlo method. In the case of 
the sx-sx correlation function, we could insert in (2.2) complete sets of eigenstates of 
the’s; rather than the S f ,  and then derive a new classical two-dimensional system. 
This will be done in a subsequent publication. For the dynamical structure function 
there is as yet no method available. 

2.4. Energy differences between two eigenvalues of H 

This can be computed by analysing the Euclidean time decay of appropriately chosen 
operators in the limit T + 0. This method plus renormalisation group considerations 
are used in Schmatzer (1983) and Marcu and Schmatzer (1985) to compute masses of 
two-particle states in the Thimng model. 

3. The quantum Monte Carlo method 

The quantum Monte Carlo method consists of two steps. First, one has to perform a 
Monte Carlo calculation for the classical system derived in 0 2. Then one has to 
perform the M e a  limit. 

The Monte Carlo procedure for the classical system is complicated by the constraint 
(2.5) on the admissible configurations. As seen in Cullen and Landau (1983), it is 
unpractical to produce configurations without any restriction, and then throw away 
the undesired ones. On the other hand, all admissible configurations should be allowed 
to occur unless there is some well founded reason to drop some of them. 

Starting from a given admissible configuration of the classical system with particle 
number np and winding number n, all other admissible configurations with the same 
n p  and n, can be reached by the following local procedure. Consider the odd plaquette 
ABCD and its four even neighbours as shown in figure 5 .  Equation (2.5) requires 

(3.1) 

The transformation 

’ SA + SO, s B j  SB  - SC’SC+SO,  S D +  S D - S O  (3.2) 

with so chosen such that all new values are admissible, preserves the conditions (3.1). 
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A” 8” 

Figure 5. The odd plaquette ABCD and its four even neighbouring plaquettes. 

The first part of our Monte Carlo algorithm consists in making sweeps through the 
lattice and offering the transformation (3.2) at each odd plaquette. 

In order to change the particle number we made sweeps through the spatial lattice 
and at each point offered to insert or remove straight world lines. Technically, this is 
achieved by the transformation ( i  is a fixed point in the spatial lattice) 

(3.3) sij + SV + CTi j =  1,. . . , M 

with ai chosen such that all new values are admissible. 
Similarly, the winding number can be changed by the transformation 

SV + SV + ( - l ) i+JCTj  i = l ,  . . . ,  N. (3.4) 
As @+ 0 the classical model becomes highly anisotropic (this can be seen by expanding 
the plaquette weights in @). One consequence is that the configurations with n, # 0 
are suppressed by a factor of at least exp(-n,PN) relative to the configurations with 
n, = 0. Therefore they almost never occur. After checking in test simulations that this 
is indeed so, we decided to fix n, = 0 for our computations. A ‘sweep’ will consist of 
a sweep of local transformations followed by a sweep of transformations (3.3). 

The S = $ case has also been investigated by Hirsch et a1 (1982). They used, however, 
only a local algorithm similar to ours in order to ‘bend’ world lines, leaving the particle 
number constant and equal to zero (equivalently they took the total spin in the z 
direction equal to zero). Using (2.15) we see that this leads to the susceptibility xzz  
being identically zero. In fact the particle number statistics can be used as a check 
for the accuracy of the calculation. If the particle number is not distributed symmetri- 
cally around zero (for one-dimensional xxz models without a magnetic field there is 
no magnetisation at finite temperatures), we know that we have not done enough 
sweeps through the lattice. 

For the isotropic ferromagnet, the particle number fluctuations are largest since 
there is a ground state for each value of np. In figure 6 we show the particle number 



2486 M Marcu and A Wiesler 

statistics for 5000 sweeps (after a warm-up of 2500 sweeps), S = 1, J,  = 1, and the 
inverse temperatures /3 = 1, p = 1.5, p = 2.5 and /3 = 5 .  For each value of p several 
values of M were taken. At low temperatures the particle number fluctuates wildly, 
as expected for the isotropic ferromagnet, and we would need many more sweeps for 
an accurate result. Notice that in figure 6(c) the symmetry of the distribution of np 
around zero becomes worse as M increases. 

After having computed the expectation value of some quantity for fixed J, and p 
but for several values of M ,  we need an extrapolation procedure in order to get the 

M = 4  

A 
-20 0 20 

M = 1 6  

M - 8  

ST 
M = I 2  

'7 

-20 0 2 0  -20 0 20 

M.20 

-20 0 20 -20 0 20 

ibl 

M . 8  M=12 M c16 

-20 AAA 0 20-20 0 20 -20 0 20 

H-20 
500 

-20 0 20 

M.24 
500 

1 
-20 A 0 20 

Figure 6. 
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/ c l  

M.0 M z 1 6  M=24 

-20 AAA 0 20 -20 0 20 -20 0 20 

M-32 
500 

i 
M =  40 
500 

M : 4 0  
500 

-20 0 20 -20 0 20 -20 0 20 

I 
Id1 

f l= 20 M =  30  M : 4 0  

- 20 0 20 -20 0 20 -20 0 20 

M = 5 0  
500 

M = 60 
500  

- 20 0 20 -20 0 20 

Figure 6. Multiplicity ( y  axis) taken by the particle number np (x  axis) for the isotropic 
ferromagnet in a sample of 5000 configurations. ( a )  J, = 1.0, p = 1.0: ( b )  J,  = 1.0, p = 1 .5 :  
(c) J , = l . O ,  p = 2 . S ;  ( d )  J,=l.O, p=S.O. N = 2 0 .  

M + CO result which interests us. At the beginning we increased the value of M until 
it was apparent that the expectation value had stabilised. The results of such a 
calculation for S = 1 are given in figures 7 ( a )  for the energy density, and 7(6)  for 
I (  .rr/2). The number of sweeps was the same as above, with a measurement done after 
each sweep. For J, = 1, p = 2.5 and for J, = 1, p = 5, the results for I (  r / 2 )  are unreliable, 
as expected from figure 6. The energy results are however reasonable, because for the 
isotropic ferromagnet at low temperatures the energy is not very sensitive to fluctuations 
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in particle number. Notice also that although the number of sweeps was always 5000, 
the errors in the data points for the energy are increasing with M. For I ( r / 2 )  this 
does not happen. 

The value of M cannot be increased beyond a certain limit. If M -t 00, then p+ 0, 
and for very small values of p some plaquette weights are close to one while others 
are almost zero (see (2.4) and table 2).  In fact, for p-. 0 only the weights of configur- 
ations with straight particle lines are not very small. As p becomes very small the 
Monte Carlo simulation becomes increasingly inefficient. For both this reason and 
computer time economy, it is desirable to extrapolate the M + 00 results from as low 
values of M as possible. 

Table 2. ( a )  The Monte Carlo results for the energy density and ( b )  ground-state energy 
density (from Blote 1975). 

( a )  

J* p = 0.4 0.6 0.8 1 .O 1.5 2.5 5.0 

- 1 .O Energy density 
Error 

-0.5 Energy density 

0 Energy density 

0.5 Energy density 

1.0 Energy density 

Error 

Error 

Error 

Error 

( b )  

-0.5471 -0.7589 
0.0159 0.0137 

-0.4004 -0.5746 
0.0158 0.0138 

-0.3396 -0.5050 
0.0205 0.0187 

-0.3510 -0.5030 
0.0150 0.0126 

-0.4511 -0.5928 
0.0159 0.0107 

-0.9280 
0.0088 

-0.7349 
0.01 10 

-0.6374 
0.0132 

-0.6016 
0.0108 

-0.6936 
0.0087 

-1.0552 -1.2353 
0.0085 0.0074 

-0.8593 -1.0423 
0.0097 0.0106 

-0.7414 -0.9193 
0.0127 0.0130 

-0.6926 -0.8368 
0.0107 0.0115 

-0.7631 -0.8593 
0.0070 0.0075 

-1.3477 
0.0067 

-1.1693 
0.0057 

- 1.0507 
0.0063 

-0.9609 
0.0065 

-0.9331 
0.0045 

-1.3901 
0.0047 

- 1.2122 
0.0038 

- 1.1027 
0.0046 

-1.0223 
0.0047 

-0.9765 
0.0047 

J2 -1.0 -0.5 0 0.5 1.0 

Ground-state energy density - 1.403 -1.230 -1.1 162 -1.0417 -1.0 

It turns out that for high enough values of M the expectation values are linear in 

(3.5) 

with the constant on the RHS depending on A, P and N. Equation (3.5) also holds 
for sums of local and bilocal observables such as the quantities described in 0 2.  A 
more detailed theoretical argument leading to (3.5) will be given elsewhere. 

Equation (3.5) suggests a linear fit of the data points as a function of 1 /  M 2  to be 
a suitable extrapolation procedure for M+co. In figure 8 we show two linear fits to 
the energy density data. In figure 8 ( a )  the linear fit of all data points (broken line) is 
not good. If we disregard the smallest value of M, the linear fit becomes satisfactory 
(dotted line). Thus the l / M 3  correction to (3 .5 )  can be neglected for all data points 
except that corresponding to the smallest value of M. In figure 8( b )  both the broken 
and the dotted lines are good linear fits. Notice that the estimated error for the 
extrapolated value is smaller for the broken line than for the dotted line. Thus it is 

1 / M 2 .  For a local observable A (cf equations (1.4), (2.2)) 

(A)N,M = ( A ) N  +Constant X 1 /  M 2  + o( 1 / M 3 )  
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-1.3 -1.20 - 

L - 1 2 8 1  
20.0 

x10-' 
0 0.008 0.016 0 10.0 

l l M Z  l i M 2  
(0) rbl 

Figure 8. Linear fit for the energy density as a function of l /  M 2 .  The broken line is a fit 
of all data points. The dotted line is a fit of the data points excluding the point with the 
lowest value of M. The error bars are given at a confidence level of 68%. The bars on 
the y axis denote the estimated error for the extrapolated value corresponding to the broken 
line; the circles on the y axis denote the estimated error for the extrapolated value 
corresponding to the dotted line, Both estimated errors have been obtained by a mean 
square fit, and are given at a confidence level of 95%. ( a )  J ,  = -1.0, f l  = 2.5; ( b )  J,  = -0.5, 
/3 = 5.0. 

useful to make the linear fit starting with as small values of M as possible, i.e. from 
the onset of the asymptotic 1/ M 2  behaviour. 

In any Monte Carlo calculation there are numerical problems deriving from the 
inherent statistical fluctuations of the measured quantities. In order to illustrate how 
these numerical problems manifest themselves in the linear 1/ M 2  fits, we give in figure 
9 some examples of linear fits for I (  4). In some cases (figures 9( c )  and ( d ) )  the linear 
fits do not give a good optical impression. However, such cases will always occur with 
a certain, albeit small probability. Having the results of several measurements at our 
disposal (for the several values of M considered) allows for a reasonable extrapolation 
in these cases too. 

We would like to conclude this section by stressing that the M + CO extrapolation 
has to be done for each quantity for each value of the couplings for each temperature. 
Without an extrapolation procedure the quantum Monte Carlo method does not yield 
reliable results. 

4. Results 

We will show here only the results for S = 1. Some of our spin-f results are given in 
Honerkamp (1982), where it is shown that they compare favourably with known exact 
results. Spin-4 results have been published in Hirsch et a1 (1982) and Schmatzer (1983) 
(the results given in Schmatzer (1983) for the Thirring model are published in Marcu 
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0 2 7  _I 1 
~ 

I 

O W  I I . , 7 

0 o.00e2 a016 o 10.0 20.0 
x l o - L  l / M  l /M2  

(a I ( b )  

1 

0.24J 

8.01 

0 0.008z 0.016 0 10.0 
1 /M l / M Z  
( c l  Id1 

Figure 9. As figure 8, but for the static structure function at four different values of ( q ,  J,, p) .  
( a )  and ( b )  are two examples of ‘optically’ very good fits; ( c )  and ( d )  are examples of 
fits where the statistical fluctuations of the Monte Carlo data are considerable. However, 
in most cases the data allowed for optically good fits. ( a )  k = 4, J,  = -1.0, p = 2 . 5 ;  ( b )  
k = l O , J , = - 0 . 5 ,  p = S . O ;  (c) k = 3 , J Z = - 0 . 5 , P = 2 . 5 ;  ( d )  k = I O , J , = - l . O , p = 5 . 0 .  

and Schmatzer (1985)). In Schmatzer (1983) linear 1/ M 2  fits are also used. There the 
aim is to obtain high accuracy results at very low temperature. 

For S = 1 all our simulations have been done with 5000 sweeps and one measurement 
after each sweep. The system was thermalised with 2500 sweeps. 

As pointed out above, the convergence rate of our approximation on the N X M 
lattice varies from one measured quantity to another, and we investigated the M --* 

limit for each quantity separately. In figure 7 we see that the energy density converges 
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slower than Z(77/2), In fact the energy density converges slower than Z(q) for all 
values of q. This is due to the fact that in equations (2.10)-(2.11) the values of e ( p )  
can become very large for p+ 0. 

Our results for the energy density as a function of temperature are plotted in figure 
10. In figure 10( a )  the dotted lines are the results of Wang (1968), obtained by computer 
diagonalisation of the xxz Hamiltonian for N = 5 ,  6 and 7.  In figure 10(b) the lines 
are drawn to guide the eye. In table 2 ( a )  we list the results for the energy density, 
and in 2( b )  the ground-state energy density (i.e. the zero temperature energy density) 
for the values of J,  considered here. For J, = I the ground-state energy density is easily 
seen to be -1.0; for the other values of J, it was computed by Blote (1975) using a 
method similar to Wang (1968). 

-0 i 1 
i 

- O  7 
.1' 

0 1 0  2 0  0 1 0  2 0  
Temperature Temperature 

(0) (bl 

Figure 10. Energy density as a function of temperature. The values of J,  are A, 1.0; B, 
-1.0; C, 0.5; D, 0; E, -0.5. 

In figures 1 1  and 12 we plotted our results for the s'-s' magnetic susceptibility 
PZ(0) (figure l l ) ,  and for the quantity PZ(.r) (figure 12), which for J,=-1  is the 
staggered susceptibility. The dotted lines are drawn to guide the eye. The accuracy 
of these results does not allow a quantitative investigation of the critical properties as 
T +  0. However, many important physical properties are apparent. Thus for J, = -0.5, 
0 and 0.5 the susceptibility has a peak at finite temperature and converges to a finite 
value as T+O (figure l l ( a ) ) .  For J, = 1 the susceptibility diverges as T+O (figure 
l l (b ) ) ;  the same is true for the staggered susceptibility at J, = -1 (figure 12(b)). 

In figure 13 we plotted our results for the static structure function Z(q). As stated 
in the introduction, we kept the lattice size constant ( N  = 20) throughout our calcula- 
tion. For J, = - 1 ,  -0.5, 0 and 0.5 the static structure function has a peak at q = .r. 
This is a reflection of the antiferromagnetic nature of the ground state. It is interesting 
to notice that for J, = 0.5 the peak at q = .r develops only at low temperatures. This 
is due to the proximity of the ferromagnet. 

In order to perform the thermodynamic limit, the value of N has to be increased 
until N / 2  is larger than the correlation length (we must take N / 2  and not N because 
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Figure 11. The magnetic susceptibility as a function of temperature. The values of J,  are 
A, 0.5; B, 0; C, -0.5, D, -1.0; E, 1.0. 
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Figure 12. The quantity p I ( q )  as a function of temperature. This quantity is the staggered 
susceptibility for the values 1 and -1 of J,. The values of J,  are A, -0.5; B, 0; C, 0.5; D, 
1.0; E, -1.0. 

of the periodic boundary conditions). For J, = -0.5,O and 0.5 the value N = 20 fulfilled 
this requirement for all temperatures considered here. For Jz=- l  and 1, however, 
N = 20 was large enough only for temperatures not exceeding T = 1 (the correlation 
length was estimated as the distance where the s z - s z  correlations became zero within 
error bars). 
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5. Conclusions and outlook 

We have tested a Monte Carlo procedure for the spin S anisotropic Heisenberg (xxz) 
model at finite temperatures. For every value of the couplings and of the temperature, 
a Monte Carlo simulation was performed for a sequence of approximating two- 
dimensional classical systems. The method used for simulating the classical system 
consists of a local part and a non-local one. Only including the latter allows us to get 
a sample of all relevant configurations. 

For the first time, we included in a quantum Monte Carlo method a systematic 
procedure for extrapolating the results obtained in the sequence of classical simulations. 
(The only other attempt to do this is, to our best knowledge, that of Cullen and Landau 
(1983). Their use of finite size scaling theory is however problematic since the two- 
dimensional classical system is highly anisotropic with couplings that vary with the 
lattice size in the Trotter direction.) 

In subsequent publications (Marcu et a1 1985), we plan to deal with the computation 
of sx-sx correlations, computations for xxz chains with external magnetic field, com- 
parison of Monte Carlo results with experiments on one-dimensional materials and 
with various theoretical predictions (e.g. in xxz models with a crystal field anisotropy 
term), and simulations of xxz models in more than one dimension, all these for arbitrary 
spin. 
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